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The numerical solution of coupled, second-order differential equations is a fundamental 
problem in theoretical physics and chemistry. There are presently over 20 commonly used 
methods. Unbiased comparisons of the methods are difficult to make and few have been 
attempted. Here we report a comparison of 11 different methods applied to 3 different test 
problems. The test problems have been constructed to approximte chemical systems of current 
research interest and to be representative of the state of the art in inelastic molecular 
collisions. All calculations were done on the same computer and the attempt was made to do 
all calculations to the same level of accuracy. The results of the initial tests indicated that an 
improved method might be obtained by using different methods in different integration 
regions. Such a hybrid program was developed and found to be at least 1.5 to 2.0 times faster 
than any individual method. 
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1. INTRODUCTION 

State-to-state chemistry is currently one of the forefront fields of chemical physics. 
In the past 10 years the ability to study the microscopic behavior of single collision 
events, both experimentally and theoretically, has developed rapidly. A common 
feature of nearly all quantum-mechanical methods for studying molecular collisions, 
whether elastic, inelastic or reactive, is the need to solve coupled sets of linear 
second-order differential equations. 

In the past 15 years there has been a rapid proliferation of methods for solving 
these sequations. Meaningful comparisons of the methods are very difficult to make 
because of the number and intangibility of the parameters which should be explored. 
These include, for example, the computer and compiler used, the accuracy of the 
solution and the efficiency of the computer codes. The few comparisons which have 
been made [l-4] usually involved only two or a few methods. Sometimes the 
calculations were done on different computersand possibly worst of all, the tests were 
done on simple model problems. The collinear vibrational problem of Secrest and 
Johnson [S] and the 9-, and 16-channel rotational problems of Lester and Bernstein 
[ 6, 71 are commonly used test cases. These problems, however, reflect the status of 
reserach in this field 10 years ago. Methods which perform well on those problems 
may very well not be optimal for problems which are typical of current research in 
molecular collision theory. 

Because of the large number of new methods, the lack of good bases for 
comparisons and the importance of solving these coupled equations in many branches 
of molecular collision theory, the National Resource for Computation in Chemistry 
(NRCC) sponsored a workshop on this topic. The goals of the workshop were to 
identify the methods and computer codes commonly in use, compare their perfor- 
mance on a fixed set of problems and make tested versions of them available to the 
scientific community. Volume I of the workshop proceedings [8] contains presen- 
tations of 12 different methods and a discussion of the problems used here. Volume II 
of the proceedings [9] provides a detailed analysis of the test results for 11 different 
computer codes. All of the codes tested are available from the NRCC’ 110-221. 

The main result of these tests is the development of a new hybrid program which 
typically runs twice as fast as any individual program and in many cases even faster 
for a given accuracy. In this paper we briefly describe the methods and test problems, 
present the main findings of the tests and described the new hybrid program. 

Although this has been a large scale study it is by no means complete. The scope 
of the tests was limited by several factors-the willingness of those who wrote or 
have codes to invest the necessary time and effort, the cost, especially when overseas 
scientists are involved and the format of the tests since different methods often require 
different types of potential matrices and basis set information. We hope that the 
results of these tests will encourage others to extend them in the future. 

I After March 1, 1981 these codes can be obtained from the Quantum Chemistry Program Exchange. 
Department of Chemistry, Indiana University, Bloomington, Ind. 47405 and the National Energy 
Software Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, III. 60439. 
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2. COUPLED EQUATIONS 

The equations to be solved are 

d= li(li + l) -- 
dr= r= 

+ kf Uij = 2 Vii,(r) Ui'j(r)* 

i ' 
(1) 

The boundary conditions imposed on the solutions are, 

Uij(0) = 0 (2) 

and 

~2 ~ij(r) = k; “2jl,(ki r) 6ij + k; “‘V,i(ki r) Kij 9 (3) 

where j,(kr) and r,(kr) are spherical Bessel functions. It should be emphasized that 
these equations apply to many different types of collisions and many approximate 
formulations of close-coupling theory. Different systems and approximations differ 
only in the definitions of the potential matrix elements Vij. 

The number of coupled equations which must be solved ranges from one, for 
elastic scattering from spherically symmetric potentials, to many thousands for large 
molecules with many closely spaced energy levels. At the present time, up to about 
100 coupled equations can be solved routinely and as many as 210 coupled equations 
have been solved 1231. With improving computer technology and numerical 
techniques, these numbers will undoubtedly increase significantly in the near future. 

3. METHODS 

Almost as important as the number of equations which must be solved, however, is 
the number of numerical methods one must chose from for solving them. Table I 
presents a list of the most commonly used methods for solving differential equations. 
Those which have an abbreviation or acronym were tested in the present study. 
Although the development of these methods spans nearly 100 years, most have been 
developed since 1965. It was about this time that high-speed, digital computers 
became widely available as research tools, and chemists and physicists began 
developing specialized techniques for the solution of Eq. (1). 

The methods in Table I fall into two broad categories-approximate solution 
methods and approximate potential methods. With the approximate solution methods, 
some functional form, usually a polynomial in r, is assigned to the solution, U, and/or 
its derivatives, over an interval dr. The parameters of that functional form are then 
chosen to best satisfy Eq. (1). These methods tend to be numerically simple, but 
require stepsizes 10 to 20 times smaller than the wavelength of the solution. They are 
usually advantageous when the wavelength is long compared to the range of the 
potential. The approximate potential methods assign a functional form to the 



TABLE I 

Numerical Methods for Integrating Differential Equations” 

Year 
Method Library 
name nameb Author 

1883 Predictor-corrector Bashforth and Adams [ 241 
1895 Runge-Kutta Runge (1895) [24]; 

1927 Extrapolation methods 
Kutta (1901) 1241 

Richardson (1927) [ 251; 

1933 Numerov 
1955 DeVogelaere 
1956 Invariant imbedding 
1966 Amplitude density 
1966 Exponential 

MNN 
DEVOG 

Gragg (1965) (251; 
Bulirsche and Stoer (1966) [ 251 

Numerov [26,27] 
DeVogelaere [28] 
Bellman and Kalaba [29-3 1 ] 
Johnson and Secrest [32] 
Pechukas and Light (1966) (331; 

1968 

1969 
1969 
1969 

Chang and Light (1969) [34] 
Diestler and McKay (1968) (351; 

Truhlar and Kuppermann (1970) f36] 
Cheung and Wilson (371 
Sams and Kouri [38] 
Gordon 139) 

1969 

SAMS 
GORDON 

PC Krogh (1969) [40]; 
Gear (1971) [25] 

1970 
1973 
1974 

MNN Allison [ 31 
LOGD Johnson [41] 
INSCAT Redmon and Micha (421 

1975 

1976 

Finite difference 
boundary value method 

Piecewise constant potential 
Integral equations 
Piecewise analytic 

reference potentials 
Variable-order, 

variable-step 
predictor-corrector 

Iterative Numerov 
Log derivative 
Integral equations with 

piecewise analytic 
reference potential 

Stormer’s 2- and 
5-step formulas 

R-matrix propagator 

Choi and Tang [43] 

RMAT 

1977 
1978 
1978 
1979 

Renormalized Numerov 
Exponential fitting 
Finite element method 
L2 approach to 

R-matrix propagator 
Iterative method for a 

single vector of solutions 
Variable-interval, 

variable-step method 
Hybrid combination of 

the log derivative and 
variable-interval, 
variable-step methods 

LZRMAT 

Light and Walker [44); 
Stechel et al. (451 

Johnson [46] 
Raptis and Allison [ 471 
Rabitz, et al. [48] 
Schneider and Walker [49] 

1979 

1979 

1980 

VIVS 

VIVA!?, 

Thomas [ 231 

Parker et al. [SO] 

Parker eta/. [Sl, 521 

“This list includes only those methods which have been primarily applied to equations with local 
potentials. Many other methods have been developed and applied to the integro-differential equations 
which arise in the theory of electron scattering from atoms and molecules. For these methods the reader 
is referred to the review articles, Refs. [53-571. 

b Library name, when given, indicates that the method was tested in this work and the entry is the 
program name in the NRCC software library. 
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potential over an interval dr, usually constant or linear in r, for which exact solutions 
are known. The solutions are then matched at the interval boundaries to propagate 
over the entire region. These methods are advantageous when the potential is slowly 
varying and when the wavelength is small compared to the range of the potential. 
They also have the advantage that much of the intermediate computational infor- 
mation for a given potential and basis set is energy independent. Therefore, if the 
potential is energy independent and calculations are done for more than one collision 
energy, the information from the first calculation can be saved and reused with 
considerable savings in computation time for other energies. The approximate 
potential methods in Table I are the methods of piecewise analytic reference 
potentials, the R-matrix propagator methods and the variable-interval, variable-step 
method. The others can all be classified as approximate solution methods. For further 
classification and discussion of the relative advantages and disadvantages of these 
methods the reader is referred to the articles of Secrest 18,581. 

A very brief description of each of the programs used in the tests follows. 

Approximate Solution Methods 

PC [ lo]---Predictor-corrector methods are among the oldest in use, but have been 
significantly improved in recent years [25, 40, 591. This program uses the variable- 
order, variable-stepsize predictor-corrector method of Shampine and Gordon [ 591. 

DEVOG [ 11 ]-The De Vogeleare algorithm was introduced to close-coupling 
calculations by Lester [60]. It is efficient, simple to program, and stepsize changes of 
arbitrary value are easy to introduce. 

MNN [ 12]-The Numerov method has been widely used in many problems in 
theoretical physics. Recent modifications to it have been given by Allison [3] and 
Johnson 1461. The program used in these tests was the Minnesota Numerov (MNN) 
program of Brandt, Truhlar, Onda, and Thirumalai. This program can do both the 
regular and iterative [3] Numerov methods and automatically selects the most 
efficient one. 

LOGD [ 13, 17 J-The log derivative method [41] uses a special invariant 
imbedding technique to propagate U’U-’ rather than the wavefunction, U, itself. This 
program also has an option for using a multi-channel WKB approximation [6 11. This 
is useful for very long range problems where the potential is slowly varying over 
several wavelengths. In this region the WKB approximation is both accurate and 
efficient. 

SAMS [ 14]-Sams and Kouri [38] transformed Eq. (1) into a Volterra integral 
equation and then developed a numerical technique by introducing an equally spaced 
quadrature formula. The program used in these tests employs a trapezoidal 
integration. 

INSCAT [ 15 ]-This is an integral equation formulation of the piecewise analytic 
potential method [42]. The differential equations are converted to Volterra integral 
equations, but a constant potential approximation is made over each integration step. 
Since the potential is not diagonalized, however, this method is intermediate between 
the approximate solution and potential methods. 
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Approximate Potential Methods 

GORDON [ 16]-The piecewise analytic reference potential method of Gordon 
[ 391 was the first approximate potential method. This is a modified version of the 
original Gordon code [62]. 

VIVS [ 17]-This new variable-interval, variable-step method [ 501 uses piecewise 
constant potentials and a fixed basis within each interval. Analytic perturbation 
corrections to the solutions are summed over the steps in an interval and the solutions 
are carried in R-matrix form. 

RMAT [ 18]-This is a modification [63] of the R-matrix propagation method 
144, 45) in which the analytic R-matrices are perturbatively corrected in each sector, 
but propagated as in the original method [44, 45). 

L2RMAT [ 19]-This is a modification of the R-matrix propagation method which 
uses an L* expansion of the wavefunction in the region of rapidly varying potential 
149). The original R-matrix propagation method [44,45] is then used for the 
remainder of the integration range. 

VIVAS [ 17]-This is a hybrid program [5 1, 521 which uses the log derivative 
method in the inner region where the potential is rapidly varying, and uses the 
variable-interval, variable-step method for the outer region. 

4. TEST PROBLEMS 

In constructing the test problems, an attempt was made to pick only realistic, 
three-dimensional problems of current research interest. With this in mind, three 
chemical Systems-He-H,, Li’-CO, and e--N,-were chosen. 

Test 1. This is the problem of rotational and vibrational excitation of H, by He 
impact. An accurate configuration-interaction (CI) potential energy surface is 
available and converged close-coupling calculations of the inelastic transition 
probabilities have been done [64]. The study of this system is therefore representative 
of the present state of the art in inelastic collision studies. The case we report here is 
an 18-channel problem for total angular momentum, J = 4, and relative kinetic 
energy, E = 0.0224 hartree. When II, is in its ground state, this corresponds to an 
asymptotic impact parameter of b = 0.38 a, and a wavelength of 0.6 a,. Table II 
gives the complete set of basis quantum numbers. 

Test 2. This is the problem of rotational excitation of rigid-rotor CO molecules 
by Lif impact. The problem was chosen because of the extremely long range of the 
interaction potential. The charge-dipole interaction leads to off-diagonal coupling 
matrix elements which asymptotically are proportional to r-*. A high quality Cl 
potential energy surface is available (651 and experimental measurements of the 
differential cross sections in the energy range 4.0-7.0 eV have been done ]66,67 ]. 
Because of the close spacing of the CO rotational energy levels, converged close- 
coupling calculations at these energies are not possible with existing methods. 
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TABLE II 

Basis Set Quantum Numbers for Tests 1, 2, and 3” 

Test 1 Test 2 Test 3 
- - - 

Target Target Target 
No. t[ j 1 energyh No. j I energy’ No. j 1 energyh 

1004 
2 2 2 
3 4 
4 6 
5 4 0 
6 2 
7 4 
8 6 
9 8 

IO 62 
II 4 
I2 6 
13 8 
14 10 
15 1 0 4 
16 22 
17 4 
18 6 

0.0 I 0 25 
0.001616 2 I 24 

3 26 
4 2 23 

0.005329 5 25 
6 27 
7 3 22 
8 24 
9 26 

0.011009 10 28 
I1 4 21 
12 23 
13 25 
14 27 

0.018971 IS 29 
16 5 20 
17 22 
18 24 
19 26 
20 6 19 
21 21 
22 23 

0.0 1 0 5 
1.76E - 5 22 3 

3 5 
5.28E - 5 4 7 

54 1 
6 3 

l.O6E-4 7 5 
8 7 
9 9 

10 6 I 
1.76E - 4 11 3 

12 5 
13 7 
14 9 
15 II 

2.648 - 4 16 8 3 
17 5 
18 7 
19 9 

3.70E - 4 20 11 
21 13 

0.0 
5.468 - 5 

1.82E - 4 

3.82B - 4 

6.56E - 4 

I’ Blank entries indicate a repeat of the above entry. 
h Energies are in atomic units e = M = h = 1. 

Therefore, the full cross section problem is really beyond the scope of exact present 
day methods. However, we can still test the speed and performance of the methods on 
unconverged basis sets. The problem we chose is a 22-channel problem with J = 25 
and E = 0.00195 hartree. For CO in its ground state, this corresponds to an 
asymptotic impact parameter b = 4.0 a, and a wavelength of 1.0 a,. The complete 
basis set used is shown in Table II. 

Test 3. This is the problem of rotational excitation of N, by electron impact. We 
wanted to test the codes on an electron-molecule system, but without the 
complications of the exchange interaction. For this reason we used the potential 
energy surface of Onda and Truhlar [ 68 ] which employs, a local approximation to 
the exchange potential, valid only for a collision energy of 1.1025 hartree. The total 
angular momentum is J = 5. The asymptotic impact parameter is b = 3.37 LI, and the 
wavelength is 4.23 a,. The complete basis set for this test is contained in Table II. 



414 THOMAS ET AL. 

TABLE III 

Most of the Important Physical Attributes of Molecular Collision Problems 

Attribute Range” 

Chemical systems 
No. of channels 
No. of closed channels 
Integration range 

needed for convergence 
Collision energy 
Asymptotic wavelength 
Transition probabilities 
Reactive scattering 
Multiple electronic surfaces 
Very high energy 

(very short wavelength) 
Coulomb potentials 
Large No. of channels (- 100) 

He-H,, Li’-CO, e--N, 
2-32 
o-2 1 
16-1000 a, 

0.779B-4-1.3025 hartree 
0.6-5.0 a, 
0.9 lE-10-0.47 
Not tested 
Not tested 
Not tested 

Not tested 
Not tested 

’ The range, when given, indicates the range covered by the test problems. 

Table III summarizes most of the physical attributes which are important in 
molecular collision calculations. For the tested group, we list the range of the 
attribute covered by the tests. Tests l-3 do not cover the full ranges listed in 
Table III. They are only a representative subset of the 24 test problems studied [ 91. 
However, examination of the full set of results does not change the conclusions 
reached here based on the above three tests. 

5. RESULTS AND DISCUSSION 

In order to get a meaningful comparison, all calculations were done on the same 
computer (LBL’s CDC 7600), and all programs were compiled on the LBL FTN4 
compiler with optimization level 2. The programs were all written in fairly portable 
FORTRAN. No assembly language routines were used. 

Possibly the most difficult quantity to assess in a comparison such as this is the 
accuracy of the solution. For any given method, the difference between two- and 
three-significant-figure accuracy is often a factor of 2 or 3 in computer time. 
Therefore, it is important to compare times only for calculations which result in 
similar accuracy. Unfortunately, precise accuracy control is very difficult to 
obtain-especially when the exact answer is not known ahead of time as with these 
test problems. An attempt was made in each case to achieve two-significant-figure 
accuracy in one specified transition probability for each test. The actual values 
computed and the correct values are shown in Table IV. It can be seen that while the 
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TABLE IV 

Selected Transition Probabilities, IS,I’, for Each Test and Method” 

Program 
Test 1 
(l,Wb 

Test 2 
U,41b 

Test 3 
(l,21b 

PC 
DEVOG 
MNN 
LOGD 
SAMS 
INSCAT 
GORDON 
VIVS 
RMAT 
LZRMAT 
VIVAS 
Correct 
rmin 
rmax 

0.1184-8’ 0.2036 - I’ 
0.1183 - 8 0.1722 - 1 
0.1181 -8 0.1666 - 1 
0.1185-8 0.1715 - 1 
0.1181 - 8 0.1752 - 1 
0.1149-8 0.2154 - 1 
0.1278 - 8 0.1702 - 1 
0.1213 - 8 0.1732 - 1 
0.1193-8 0.1709 - 1 
0.1170-8 0.1718 - 1 
0.1164-8 0.1710- 1 
0.1184-8 0.1715 - 1 
2.5 3.0 

45.0 800.0 

0.2864- 2’ 
0.2874- 2 
0.2874 - 2 
0.2868 - 2 
0.2876 - 2 
0.2887 - 2 
0.2860 - 2 
0.2867 - 2 
0.2885 - 2 
0.2865 - 2 
0.2861 - 2 
0.2873 - 2 
0.01 

120.0 

’ The correct answers for Tests 1 and 3 are accurate to four significant figures. For Test 2, the correct 
answer is only guaranteed to two significant figures. rmin and rmax indicate the integration range used to 
calculate the correct answer. 

b The channel numbers i andj correspond to those in Table II. 
c - indicates the power of 10. 

results are reasonably uniform, there are differences in the accuracies achieved. 
Therefore, it is quite possible that the times reported for specific methods could be 
improved on some tests by tine tuning. Nonetheless, we believe the comparisons are 
meaningful for two reasons. First, as we show below, the spread in computer time 
over all methods for each test is a factor between 20 and 50. This is a significant 
difference which could not be eliminated by refining the accuracy. Second, the 
accuracies and times reported here are typical of those which would be chosen for a 
new research problem where the accuracy of each partial wave could not be 
individually fine tuned. 

Most workers in this field have realized that the computational effort to integrate 
Eq. (1) is different in different regions of the integration variable, r. For example, 
when r is near the origin the potential is often large and rapidly varying. The 
solutions have exponential behavior requiring small stepsizes. When r is large, the 
potential is small and slowly varying. The solutions are oscillatory and numerically 
stable to integrate. Therefore, rather than simply compare the total integration times 
for all of the methods, it is much more revealing to see which methods are fastest in 
different regions of r. We do this in the following fashion. By dividing the total time 
by the total number of integration steps we get the average computer time per step. 
Then by dividing the entire integration range into smaller intervals and counting the 
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number of steps taken in each interval, we get a histographic approximation to dtldr, 
the computer time to integrate a unit of distance, i.e., 

_- Nr+Ar)-N(r) dt Ttota, 
dr - N total Ar ’ (4) 

where N(r) is the number of steps required to integrate from rmin to r. Note that the 
reciprocal of this, dr/dt, is the “velocity” at each point, r, with which the computer is 
integrating the coupled equations. 

The results from all the methods tested are shown in Tables V-VII and selected 
results in Figs. l-3. It was not convenient to compute dt/dr at exactly the same 
points, r, for all methods. Therefore, linear interpolation was used to calculate the 
numbers in Table V-VII. The time at the bottom of each table is the total time for the 
region bounded by the first and last values of r listed. 

Figure 1 and Table V show the results for Test 1. High absolute accuracy is 
required on this problem because the transition probability being calculated is very 
small. For many of the programs this was the most difficult problem to solve. For 
small r, LOGD is most efficient by a fairly wide margin, and VIVS at the second 
energy is best for large r. For first energy calculations, however, INSCAT has the 
smallest total time. 

Figure 2 and Table VI show the results for Test 2. This is a long range problem 
and the total times are dominated by the value of dt/dr at large r. The results are 
only shown for r < 150.00 a, even though r,,, = 800.0 a, was necessary for the 

-0.80; 

.2.0()L-‘----mI~- L .-1- .~A 
0.40 0.60 0.80 i.00 I.20 1.40 

Loglor, Bohr 

FIG. 1. Test 1. Comparison of dt/dr for the LOGD, VIVS, and INSCAT programs. El and E2 
indicate first and second energy calculations, respectively. 
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FIG. 2. Test 2. Same as Fig. 1. 
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FIG. 3. Test 3. Comparison of dr/dr for the LOGD, VIVS, and SAMS programs. El and E2 
indicate first and second energy calculations, respectively. 

correct answer. For first energy calculations, LOGD is stii1 best at small r. However, 
several of the approximate potential methods, especially GORDON, are faster at 
second energies in this region. For large r, VIVS at the second energy is again the 
fastest. Because of the long range of the potential and the large number of oscillations 
over this range, the approximate solution methods are impractical for this problem. 
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Figure 3 and Table VII show the results for Test 3. Although the collision energy 
is much higher for this problem than for the others, the asymptotic wavelength is still 
quite long-42 +--because of the small mass of the electron. Consequently, the 
approximate solution methods do much better than one might at first expect. For 
most of the programs, getting the correct answer for this problem presented the fewest 
difficulties. The potential energy function for the e-N, interaction at small r is quite 
small in contrast to the large barriers which are typical of atom-molecule potentials. 
In the non-classical region the interaction is dominated by the centrifugal terms. 
Since these terms are already included without approximation in the SAMS program, 
SAMS excels on this problem. Its total time is best of all the individual 
programs, even bettering the approximate potential methods on the second energy. 
LOGD and SAMS perform equally well at small r and are best in this region. VIVS, 
at the second energy, is again best for large r. However, we should emphasize that 
when the potential depends on the collision energy, as is the case for local approx- 
imations to the electron exchange potential, the second energy calculations of the 

TABLE VIII 

Integrated Total Times from Tables V-VII Arranged in Ascending Order on the Time“ 

Method 

Test 1 Test 2 Test 3 

Time Time Time 
Energy (set) Method Energy (set) Method Energy (set) 

- 

VIVAS 
HYBRID 
VIVAS 
HYBRID 
VIVS 
INSCAT 
LOGD 
L2RMAT 
MNN 
RMAT 
GORDON 
VIVS 
LZRMAT 
DEVOG 
SAMS 
RMAT 
PC 
GORDON 

2nd 
2nd 
1 St 
1st 
2nd 

2nd 

2nd 
2nd 
1st 
1st 

1st 

1st 

1.0 
1.3 
1.6 
2.1 
2.4 
2.6 
2.1 
2.8 
5.9 
6.3 
1.1 
9.3 
9.4 

13.8 
15.8 
16.4 
25.5 
39.0 

VIVAS 
HYBRID 
VIVS 
VIVAS 
GORDON 
HYBRID 
RMAT 
RMAT 
VIVS 
LOGD 
LZRMAT 
INSCAT 
RMAT 
GORDON 
SAMS 
LZRMAT 
DEVOG 
MNN 
PC 

2nd 
2nd 
2nd 
1st 
2nd 
1st 
2nd 
1st 
1 st 

2nd 

1st 
1st 

1st 

2.2 
3.3 
3.8 
5.9 
6.4 
9.5 
3.0 

10.9 
14.5 
15.1 
19.6 
22.8 
28.6 
37.9 
38.4 
56.5 
81.0 

108.7 
110.2 

VIVAS 
HYBRID 
SAMS 
VIVS 
VIVAS 
LZRMAT 
GORDON 
HYBRID 
LOGD 
DEVOG 
MNN 
RMAT 
VIVS 
INSCAT 
L2RMAT 
PC 
GORDON 

2nd 
2nd 

2nd 
1st 
2nd 
2nd 
1st 

1st 
1st 

1 st 

1 St 

1.1 
1.6 
2. I 
2.3 
2.9 
3.3 
4.2 
4.4 
5.3 
7.3 
7.6 
7.9 
9.3 
9.4 

11.7 
14.4 
22.1 

’ The hypothetical HYBRID times are the sum of the times for LOGD integrated from r,,,, to r,, and 
for VIVS integrated from r,, to rmsr. re is 8.0, 6.0, and 4.0 a, for Test 1, Test 2, and Test 3, respectively. 
The VIVAS times are real computer times from a new hybrid program. 

581’41,‘2 13 
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approximate potential methods are not valid for comparison. The advantage these 
methods normally have for additional collision energies is lost in this case. 

Overall, one is struck by the widely varying performances of the individual 
programs on the different physical probiems. For example, INSCAT is the best 
performer for first energy calculations on Test 1 and a factor of 6 faster than SAMS. 
On Test 3, nearly the opposite is true. It is also quite clear that the best program 
would be a hybrid which followed the lowest dt/dr curve in all regions. Although no 
single method is best for all tests in any region, the log derivative method is nearly 
always best for small r and the variable-interval, variable-step method is nearly 
always best for large r. It therefore was desirable to combine these methods and form 
a new hybrid program. This is not the ideal combination for all problems, but this 
hybrid is always better than any individual method. This is evident in Table VIII. 

Table VIII summarizes the total times from Tables V-VII, with the methods 
ordered according to computer time. The HYBRID entry is not from an actual 
program. It was hand calculated by integrating dtjdr from rmin to r0 for LOGD and 
from r0 to rmax for VIVS. It can be seen that the second energy HYBRID time is 
always smaller than any individual method. For the short range problems the 
HYBRID result is 1.5 to 2.0 times faster than either of the two methods individually. 
For the long range problem of Test 2, the improvement is minimal because the total 
time is dominated by the long range region. 

On the basis of these findings a hybrid program, VIVAS, has been developed 
117, 5 1, 52 1, which combines the variable-interval, variable-step and the log derivative 
methods. In addition, this program includes significant improvements to the original 
variable-interval, variable-step program, VIVS. It can be seen in Table VIII that the 
new program is significantly faster than any of the individual programs. 

Finally, regarding Table VIII, we return to the discussion of accuracy. As stated 
before, improvements in performance of the individual methods can often be made 
and probably could be made here by refining the input parameters to each program. 
This means that the ordering of the methods in Table VIII should not be taken 
literally, However, factors of 20 to 50 are observed between the smallest and largest 
times. These differences are significant and it is believed doubtful that they could be 
eliminated by refmements in the numerical parameters of the methods. 
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