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The numerical solution of coupled, second-order differential equations is a fundamental
problem in theoretical physics and chemistry. There are presently over 20 commonly used
methods. Unbiased comparisons of the methods are difficult to make and few have been
attempted. Here we report a comparison of 11 different methods applied to 3 different test
problems. The test problems have been constructed to approximte chemical systems of current
research interest and to be representative of the state of the art in inelastic molecular
collisions. All calculations were done on the same computer and the attempt was made to do
all calculations to the same level of accuracy. The results of the initial tests indicated that an
improved method might be obtained by using different methods in different integration
regions. Such a hybrid program was developed and found to be at least 1.5 to 2.0 times faster

than any individual method.
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1. INTRODUCTION

State-to-state chemistry is currently one of the forefront fields of chemical physics.
In the past 10 years the ability to study the microscopic behavior of single collision
events, both experimentally and theoretically, has developed rapidly. A common
feature of nearly all quantum-mechanical methods for studying molecular collisions,
whether elastic, inelastic or reactive, is the need to solve coupled sets of linear
second-order differential equations.

In the past 15 years there has been a rapid proliferation of methods for solving
these sequations. Meaningful comparisons of the methods are very difficult to make
because of the number and intangibility of the parameters which should be explored.
These include, for example, the computer and compiler used, the accuracy of the
solution and the efficiency of the computer codes. The few comparisons which have
been made [1-4] usually involved only two or a few methods. Sometimes the
calculations were done on different computers,and possibly worst of all, the tests were
done on simple model problems. The collinear vibrational probiem of Secrest and
Johnson [5] and the 9-, and 16-channel rotational problems of Lester and Bernstein
[6,7) are commonly used test cases. These problems, however, reflect the status of
reserach in this field 10 years ago. Methods which perform well on those problems
may very well not be optimal for problems which are typical of current research in
molecular collision theory.

Because of the large number of new methods, the lack of good bases for
comparisons and the importance of solving these coupled equations in many branches
of molecular collision theory, the National Resource for Computation in Chemistry
(NRCC) sponsored a workshop on this topic. The goals of the workshop were to
identify the methods and computer codes commonly in use, compare their perfor-
mance on a fixed set of problems and make tested versions of them available to the
scientific community. Volume I of the workshop proceedings [8] contains presen-
tations of 12 different methods and a discussion of the problems used here. Volume I1
of the proceedings |9] provides a detailed analysis of the test results for 11 different
computer codes. All of the codes tested are available from the NRCC' [10-22].

The main result of these tests is the development of a new hybrid program which
typically runs twice as fast as any individual program and in many cases even faster
for a given accuracy. In this paper we briefly describe the methods and test problems,
present the main findings of the tests and described the new hybrid program.

Although this has been a large scale study it is by no means complete. The scope
of the tests was limited by several factors—the willingness of those who wrote or
have codes to invest the necessary time and effort, the cost, especially when overseas
scientists are involved and the format of the tests since different methods often require
different types of potential matrices and basis set information. We hope that the
results of these tests will encourage others to extend them in the future.

' After March 1, 1981 these codes can be obtained from the Quantum Chemistry Program Exchange.

Department of Chemistry, Indiana University, Bloomington, Ind. 47405 and the National Energy
Software Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, 1ll. 60439.
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2. CourPLED EQUATIONS

The equations to be solved are

a L +1
(W_(_rz__) + kf) u, = ,Z Vidr) up(r). (1)

The boundary conditions imposed on the solutions are,
u;{0)=0 (2)
and

lim u;(r)=k; ]/Zjl,-(kir) Oy + ki l/zﬂzf(ki rK;, (3)

where j,(kr) and n,(kr) are spherical Bessel functions. It should be emphasized that
these equations apply to many different types of collisions and many approximate
formulations of close-coupling theory. Different systems and approximations differ
only in the definitions of the potential matrix elements V/;.

The number of coupled equations which must be solved ranges from one, for
elastic scattering from spherically symmetric potentials, to many thousands for large
molecules with many closely spaced energy levels. At the present time, up to about
100 coupled equations can be solved routinely and as many as 210 coupled equations
have been solved [23]. With improving computer technology and numerical
techniques, these numbers will undoubtedly increase significantly in the near future.

3. METHODS

Almost as important as the number of equations which must be solved, however, is
the number of numerical methods one must chose from for solving them. Table I
presents a list of the most commonly used methods for solving differential equations.
Those which have an abbreviation or acronym were tested in the present study.
Although the development of these methods spans nearly 100 years, most have been
developed since 1965. It was about this time that high-speed, digital computers
became widely available as research tools, and chemists and physicists began
developing specialized techniques for the solution of Eq. (1).

The methods in TableI fall into two broad categories—approximate solution
methods and approximate potential methods. With the approximate solution methods,
some functional form, usually a polynomial in r, is assigned to the solution, u, and/or
its derivatives, over an interval Ar. The parameters of that functional form are then
chosen to best satisfy Eq. (1). These methods tend to be numerically simple, but
require stepsizes 10 to 20 times smaller than the wavelength of the solution. They are
usually advantageous when the wavelength is long compared to the range of the
potential. The approximate potential methods assign a functional form to the



TABLE I

Numerical Methods for Integrating Differential Equations®

Method Library
Year name name’ Author
1883 Predictor—corrector Bashforth and Adams [24]
1895 Runge-Kutta Runge (1895) [24];
Kutta (1901) [24]
1927 Extrapolation methods Richardson (1927) [25];
Gragg (1965) [25];
Bulirsche and Stoer (1966) [25]
1933 Numerov MNN Numerov [26, 27)
1955 DeVogelaere DEVOG DeVogelaere [28]
1956 Invariant imbedding Beliman and Kalaba [29-31]
1966 Amplitude density Johnson and Secrest [32]
1966 Exponential Pechukas and Light (1966) [33];
Chang and Light (1969) [34]
1968 Finite difference Diestler and McKoy (1968) [35];
boundary value method Truhlar and Kuppermann (1970) §36]
1969 Piecewise constant potential Cheung and Wilson [37]
1969 Integral equations SAMS Sams and Kouri [38]
1969 Piecewise analytic GORDON Gordon [39]
reference potentials
1969 Variable-order, PC Krogh (1969) [40];
variable-step Gear (1971) [25]
predictor—corrector
1970 Iterative Numerov MNN Allison [3]
1973 Log derivative LOGD Johnson [41]
1974 Integral equations with INSCAT Redmon and Micha (42]
piecewise analytic
reference potential
1975 Stormer’s 2- and Choi and Tang [43]
5-step formulas
1976 R-matrix propagator RMAT Light and Walker [44];
Stechel et al. [45]
1977 Renormalized Numerov Johnson [46]
1978 Exponential fitting Raptis and Allison {47]
1978 Finite element method Rabitz, et al. [48] )
1979 L? approach to L2RMAT Schneider and Walker [49]
R-matrix propagator
1979 lterative method for a Thomas (23]
single vector of solutions
1979 Variable-interval, VIVS Parker et al. [50]
variable-step method
1980 Hybrid combination of VIVAS Parker et al. 51, 52]

the log derivative and
variable-interval,
variable-step methods

“ This list includes only those methods which have been primarily applied to equations with local
potentials. Many other methods have been developed and applied to the integro-differential equations
which arise in the theory of electron scattering from atoms and molecules. For these methods the reader

is referred to the review articles, Refs, [53-57].

? Library name, when given, indicates that the method was tested in this work and the entry is the

program name in the NRCC software library.
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potential over an interval 4r, usually constant or linear in r, for which exact solutions
are known. The solutions are then matched at the interval boundaries to propagate
over the entire region. These methods are advantageous when the potential is slowly
varying and when the wavelength is small compared to the range of the potential.
They also have the advantage that much of the intermediate computational infor-
mation for a given potential and basis set is energy independent. Therefore, if the
potential is energy independent and calculations are done for more than one collision
energy, the information from the first calculation can be saved and reused with
considerable savings in computation time for other energies. The approximate
potential methods in TableI are the methods of piecewise analytic reference
potentials, the R-matrix propagator methods and the variable-interval, variable-step
method. The others can all be classified as approximate solution methods. For further
classification and discussion of the relative advantages and disadvantages of these
methods the reader is referred to the articles of Secrest |8, 58].
A very brief description of each of the programs used in the tests follows.

Approximate Solution Methods

PC [10]—Predictor—corrector methods are among the oldest in use, but have been
significantly improved in recent years [25, 40, 59]. This program uses the variable-
order, variable-stepsize predictor—corrector method of Shampine and Gordon [59].

DEVOG |11}—The DeVogeleare algorithm was introduced to close-coupling
calculations by Lester [60]. It is efficient, simple to program, and stepsize changes of
arbitrary value are easy to introduce.

MNN [12]—The Numerov method has been widely used in many problems in
theoretical physics. Recent modifications to it have been given by Allison [3] and
Johnson [46]. The program used in these tests was the Minnesota Numerov (MNN)
program of Brandt, Truhlar, Onda, and Thirumalai. This program can do both the
regular and iterative [3] Numerov methods and automatically selects the most
efficient one.

LOGD |13, 17]—The log derivative method [41] uses a special invariant
imbedding technique to propagate u'u ' rather than the wavefunction, u, itself. This
program also has an option for using a multi-channel WKB approximation [61]. This
is useful for very long range problems where the potential is slowly varying over
several wavelengths. In this region the WKB approximation is both accurate and
efficient.

SAMS |14]|—Sams and Kouri [38] transformed Eq. (1) into a Volterra integral
equation and then developed a numerical technique by introducing an equally spaced
quadrature formula. The program used in these tests employs a trapezoidal
integration.

INSCAT [15]—This is an integral equation formulation of the piecewise analytic
potential method [42]. The differential equations are converted to Volterra integral
equations, but a constant potential approximation is made over each integration step.
Since the potential is not diagonalized, however, this method is intermediate between
the approximate solution and potential methods.
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Approximate Potential Methods

GORDON |[16]—The piecewise analytic reference potential method of Gordon
[39] was the first approximate potential method. This is a modified version of the
original Gordon code [62].

VIVS [17]—This new variable-interval, variable-step method |50] uses piecewise
constant potentials and a fixed basis within each interval. Analytic perturbation
corrections to the solutions are summed over the steps in an interval and the solutions
are carried in R-matrix form.

RMAT (18}—This is a modification {63] of the R-matrix propagation method
{44, 45] in which the analytic R-matrices are perturbatively corrected in each sector,
but propagated as in the original method [44, 45].

L2RMAT [19}—This is a modification of the R-matrix propagation method which
uses an L? expansion of the wavefunction in the region of rapidly varying potential
|49]. The original R-matrix propagation method [44,45] is then used for the
remainder of the integration range.

VIVAS [17]—This is a hybrid program [51,52] which uses the log derivative
method in the inner region where the potential is rapidly varying, and uses the
variable-interval, variable-step method for the outer region.

4. TEST PROBLEMS

In constructing the test problems, an attempt was made to pick only realistic,
three-dimensional problems of current research interest. With this in mind, three
chemical systems—He-H,, Li*—CO, and e —~N,—were chosen.

Test 1. This is the problem of rotational and vibrational excitation of H, by He
impact. An accurate configuration-interaction (CI) potential energy surface is
available and converged close-coupling calculations of the inelastic transition
probabilities have been done [64]. The study of this system is therefore representative
of the present state of the art in inelastic collision studies. The case we report here is
an 18-channel problem for total angular momentum, J=4, and relative kinetic
energy, £ =0.0224 hartree. When H, is in its ground state, this corresponds to an
asymptotic impact parameter of b=0.38 ¢, and a wavelength of 0.6 a,. Table Il
gives the complete set of basis quantum numbers.

Test 2. This is the problem of rotational excitation of rigid-rotor CO molecules
by Li* impact. The problem was chosen because of the extremely long range of the
interaction potential. The charge—dipole interaction leads to off-diagonal coupling
matrix elements which asymptotically are proportional to r™% A high quality CI
potential energy surface is available [65] and experimental measurements of the
differential cross sections in the energy range 4.0-7.0 eV have been done {66, 67|.
Because of the close spacing of the CO rotational energy levels, converged close-
coupling calculations at these energies are not possible with existing methods.
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TABLE 1I

Basis Set Quantum Numbers for Tests 1, 2, and 3¢

Test 1 Test 2 Test 3
Target Target Target
No. n j | energy’ No. j !/ energy” No. j I energy”
1 0 0 4 0.0 1 0 25 0.0 1 0 5 0.0
2 2 2 0.001616 2 1 24 1.76E — 5 2 2 3 5.46FE —5
3 4 3 26 3 5
4 6 4 2 23 5.28E—5 4 7
5 4 0 0.005329 5 25 5 4 1 1.82E —4
6 2 6 27 6 3
7 4 7 3 22 1.O6F — 4 7 5
8 6 8 24 8 7
9 8 9 26 9 9
10 6 2 0.011009 10 28 10 6 1 3824
11 4 I 4 21 1.76E — 4 11 3
12 6 12 23 12 5
13 8 13 2§ 13 7
14 10 14 27 14 9
15 1 0 4 0.018971 15 29 15 11
16 22 16 5 20 2.64FE — 4 16 8 3 6.56E — 4
17 4 17 22 17 5
18 6 18 24 18 7
19 26 19 9
20 6 19 3.70E—4 20 11
21 21 21 13
22 23

“ Blank entries indicate a repeat of the above entry.
” Energies are in atomic units e=m=Hh = 1.

Therefore, the full cross section problem is really beyond the scope of exact present
day methods. However, we can still test the speed and performance of the methods on
unconverged basis sets. The problem we chose is a 22-channel problem with J = 25
and E =0.00195 hartree. For CO in its ground state, this corresponds to an
asymptotic impact parameter b =4.0q, and a wavelength of 1.0 a,. The complete
basis set used is shown in Table II.

Test 3. This is the problem of rotational excitation of N, by electron impact. We
wanted to test the codes on an electron—-molecule system, but without the
complications of the exchange interaction. For this reason we used the potential
energy surface of Onda and Truhlar [68] which employs, a local approximation to
the exchange potential, valid only for a collision energy of 1.1025 hartree. The total
angular momentum is .J = 5. The asymptotic impact parameter is b = 3.37 a, and the
wavelength is 4.23 a,. The complete basis set for this test is contained in Table II.
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TABLE III

Most of the Important Physical Attributes of Molecular Collision Problems

Attribute Range”
Chemical systems H,-H,,Li*-C0O, e N,
No. of channels 2-32
No. of closed channels 0-21
Integration range 16-1000 g,
needed for convergence
Collision energy 0.779E-4-1.1025 hartree
Asymptotic wavelength 0.6-5.04a,
Transition probabilities 0.91E-10-0.47
Reactive scattering Not tested
Multiple electronic surfaces Not tested
Very high energy Not tested
(very short wavelength)
Coulomb potentials Not tested
Large No. of channels (~100) Not tested

“ The range, when given, indicates the range covered by the test problems.

Table III summarizes most of the physical attributes which are important in
molecular collision calculations. For the tested group, we list the range of the
attribute covered by the tests. Tests 1-3 do not cover the full ranges listed in
Table III. They are only a representative subset of the 24 test problems studied |9}.
However, examination of the full set of results does not change the conclusions
reached here based on the above three tests.

5. RESULTS AND DISCUSSION

In order to get a meaningful comparison, all calculations were done on the same
computer (LBL’s CDC 7600), and all programs were compiled on the LBL FTN4
compiler with optimization level 2. The programs were all written in fairly portable
FORTRAN. No assembly language routines were used.

Possibly the most difficult quantity to assess in a comparison such as this is the
accuracy of the solution. For any given method, the difference between two- and
three-significant-figure accuracy is often a factor of 2 or 3 in computer time.
Therefore, it is important to compare times only for calculations which result in
similar accuracy. Unfortunately, precise accuracy control is very difficult to
obtain—especially when the exact answer is not known ahead of time as with these
test problems. An attempt was made in each case to achieve two-significant-figure
accuracy in one specified transition probability for each test. The actual values
computed and the correct values are shown in Table IV. It can be seen that while the
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TABLE IV
Selected Transition Probabilities, |S;;|, for Each Test and Method”

Test 1 Test 2 Test 3
Program (1,150 (1,4) (1,2)°
PC 0.1184 — 8¢ 0.2036 - 1°¢ 0.2864 - 2¢
DEVOG 0.1183 -8 0.1722 -1 0.2874- 2
MNN 0.1181 -8 0.1666 — 1 0.2874 — 2
LOGD 0.1185—8 0.1715 -1 0.2868 — 2
SAMS 0.1181—38 0.1752 -1 0.2876 — 2
INSCAT 0.1149 -8 0.2154 — 1 0.2887 — 2
GORDON 0.1278 — 8 0.1702 — 1 0.2860 — 2
VIVS 0.1213 -8 0.1732 -1 0.2867 —2
RMAT 0.1193 -8 0.1709 — 1 0.2885 -2
L2RMAT 0.1170 - 8 0.1718 - 1 0.2865 —2
VIVAS 0.1164 — 8 0.1710 — 1 0.2861 — 2
Correct 0.1184 -8 0.1715 -1 028732
Foin 25 3.0 0.01
. 45.0 800.0 120.0

“ The correct answers for Tests | and 3 are accurate to four significant figures. For Test 2, the correct
answer is only guaranteed to two significant figures. r_;, and r,,,, indicate the integration range used to
calculate the correct answer.

® The channel numbers i and j correspond to those in Table II.

¢ — indicates the power of 10.

results are reasonably uniform, there are differences in the accuracies achieved.
Therefore, it is quite possible that the times reported for specific methods could be
improved on some tests by fine tuning. Nonetheless, we believe the comparisons are
meaningful for two reasons. First, as we show below, the spread in computer time
over all methods for each test is a factor between 20 and 50. This is a significant
difference which could not be eliminated by refining the accuracy. Second, the
accuracies and times reported here are typical of those which would be chosen for a
new research problem where the accuracy of each partial wave could not be
individually fine tuned.

Most workers in this field have realized that the computational effort to integrate
Eq. (1) is different in different regions of the integration variable, r. For example,
when r is near the origin the potential is often large and rapidly varying. The
solutions have exponential behavior requiring small stepsizes. When r is large, the
potential is small and slowly varying. The solutions are oscillatory and numerically
stable to integrate. Therefore, rather than simply compare the total integration times
for all of the methods, it is much more revealing to see which methods are fastest in
different regions of r. We do this in the following fashion. By dividing the total time
by the total number of integration steps we get the average computer time per step.
Then by dividing the entire integration range into smaller intervals and counting the
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number of steps taken in each interval, we get a histographic approximation to dt/dr,
the computer time to integrate a unit of distance, i.e.,

it_,\, Ttotal N(r+Ar)—N(r)

4
dr= Nl Ar )

where N(r) is the number of steps required to integrate from r,,;, to r. Note that the
reciprocal of this, dr/dt, is the “velocity” at each point, r, with which the computer is
intPgrm'm_g the r:mlph:ﬂ Pr‘:nnfinnc

The results from all the methods tested are shown in Tables V-VII and selected
results in Figs. 1-3. It was not convenient to compute dt/dr at exactly the same
points, r, for all methods. Therefore, linear interpolation was used to calculate the
numbers in Table V-VII. The time at the bottom of each table is the total time for the
region bounded by the first and last values of r listed.

Figure 1 and Table V show the results for Test 1. High absolute accuracy is
required on this problem because the transition probability being calculated is very
small. For many of the programs this was the most difficult problem to solve. For
small r, LOGD is most efficient by a fairly wide margin, and VIVS at the second
energy is best for large r. For first energy calculations, however, INSCAT has the
smaliest total time.

Figure 2 and Table VI show the results for Test 2. This is a long range problem
and the total times are dominated by the value of dt/dr at large r. The results are
only shown for r< 150.00 @, even though r ,, =800.0 a, was necessary for the

| .20#' 1 7 1 1 T
| ]
TEST 1 ‘
=
(@) I
g
1 !
Q i
72
S} ,
~
o . LOGD
o :
8~. M, i
Ty,
9 N SVIVS,E1
o .
L “oc INSCAT
. ‘
- - PO )
160! “Covivs, E2
ooob—1 1 I

040 060 0.80 100 120 140
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Fic. 1. Test 1. Comparison of dt/dr for the LOGD, VIVS, and INSCAT programs. El and E2
indicate first and second energy calculations, respectively.
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FIG. 2. Test 2. Same as Fig. 1.
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Test 3. Comparison of dt/dr for the LOGD, VIVS, and SAMS programs. El and E2

indicate first and second energy calculations, respectively.

correct answer. For first energy calculations, LOGD is stiil best at small r. However,
several of the approximate potential methods, especially GORDON, are faster at
second energies in this region. For large r, VIVS at the second energy is again the
fastest. Because of the long range of the potential and the large number of oscillations
over this range, the approximate solution methods are impractical for this problem.
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Figure 3 and Table VII show the results for Test 3. Although the collision energy
is much higher for this problem than for the others, the asymptotic wavelength is still
quite long—4.2 a,—because of the small mass of the electron. Consequently, the
approximate solution methods do much better than one might at first expect. For
most of the programs, getting the correct answer for this problem presented the fewest
difficulties. The potential energy function for the e~N, interaction at small r is quite
small in contrast to the large barriers which are typical of atom—molecule potentials.
In the non-classical region the interaction is dominated by the centrifugal terms.
Since these terms are aiready included without approximation in the SAMS program,
SAMS excels on this problem. Its total time is best of all the individual
programs, even bettering the approximate potential methods on the second energy.
LOGD and SAMS perform equally well at small r and are best in this region. VIVS,
at the second energy, is again best for large r. However, we should emphasize that
when the potential depends on the collision energy, as is the case for local approx-
imations to the electron exchange potential, the second energy calculations of the

TABLE VIII

Integrated Total Times from Tables V-VII Arranged in Ascending Order on the Time¢

Test 1 Test 2 Test 3

Time Time Time
Method Energy (sec) Method Energy (sec) Method Energy (sec)
VIVAS 2nd 1.0 VIVAS 2nd 2.2 VIVAS 2nd 1.1
HYBRID 2nd 1.3 HYBRID 2nd 33 HYBRID 2nd 1.6
VIVAS Ist 1.6 VIVS 2nd 38 SAMS 2.1
HYBRID Lst 2.1 VIVAS Ist 5.9 VIVS 2nd 2.3
VIVS 2nd 2.4 GORDON 2nd 6.4 VIVAS Ist 2.9
INSCAT 2.6 HYBRID Ist 9.5 L2RMAT 2nd 33
LOGD 2.7 RMAT 2nd 3.0 GORDON 2nd 4.2
L2RMAT 2nd 2.8 RMAT Ist 10.9 HYBRID Ist 4.4
MNN 5.9 VIVS Ist 14.5 LOGD 5.3
RMAT 2nd 6.3 LOGD 15.1 DEVOG 7.3
GORDON 2nd 7.1 L2RMAT 2nd 19.6 MNN 7.6
VIVS Ist 9.3 INSCAT 22.8 RMAT Ist 7.9
L2RMAT [st 9.4 RMAT Ist 28.6 VIVS Ist 9.3
DEVOG 13.8 GORDON Ist 37.9 INSCAT 9.4
SAMS 15.8 SAMS 384 L2RMAT Ist 11.7
RMAT Ist 16.4 L2RMAT Ist 56.5 PC 14.4
PC 25.5 DEVOG 81.0 GORDON Ist 22.1
GORDON Ist 39.0 MNN 108.7

PC 110.2

“ The hypothetical HYBRID times are the sum of the times for LOGD integrated from r.,,;, to r, and
for VIVS integrated from r, to r,,,. *, is 8.0, 6.0, and 4.0 a, for Test 1, Test 2, and Test 3, respectively.
The VIVAS times are real computer times from a new hybrid program.

$81/41/2.13
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approximate potential methods are not valid for comparison. The advantage these
methods normally have for additional collision energies is lost in this case.

Overall, one is struck by the widely varying performances of the individual
programs on the different physical problems. For example, INSCAT is the best
performer for first energy calculations on Test 1 and a factor of 6 faster than SAMS.
On Test 3, nearly the opposite is true. It is also quite clear that the best program
would be a hybrid which followed the lowest dt/dr curve in all regions. Although no
single method is best for all tests in any region, the log derivative method is nearly
always best for small » and the variable-interval, variable-step method is nearly
always best for large r. It therefore was desirable to combine these methods and form
a new hybrid program. This is not the ideal combination for all problems, but this
hybrid is always better than any individual method. This is evident in Table VIIIL

Table VIII summarizes the total times from Tables V-VII, with the methods
ordered according to computer time. The HYBRID entry is not from an actual
program. It was hand calculated by integrating dt/dr from r,, to r, for LOGD and
from ry 10 rp,, for VIVS. It can be seen that the second energy HYBRID time is
always smaller than any individual method. For the short range problems the
HYBRID result is 1.5 to 2.0 times faster than either of the two methods individually,
For the long range problem of Test 2, the improvement is minimal because the total
time is dominated by the long range region.

On the basis of these findings a hybrid program, VIVAS, has been developed
[17, 51, 52}, which combines the variable-interval, variable-step and the log derivative
methods. In addition, this program includes significant improvements to the original
variable-interval, variable-step program, VIVS. It can be seen in Table VIII that the
new program is significantly faster than any of the individual programs.

Finally, regarding Table VIII, we return to the discussion of accuracy. As stated
before, improvements in performance of the individual methods can often be made
and probably could be made here by refining the input parameters to each program.
This means that the ordering of the methods in Table VIII should not be taken
literally. However, factors of 20 to 50 are observed between the smallest and largest
times. These differences are significant and it is believed doubtful that they could be
eliminated by refinements in the numerical parameters of the methods.
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